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Abstract 

 

  Military strategy and operations have evolved significantly over the past decade. 

This evolution has led to a change in the military resources required to carry out missions 

successfully.  In line with these requirements, demand has increased for unmanned aerial 

vehicles (UAV) with enhanced capability to perform surveillance and to strike targets of 

interest.  This research effort aids in the design of a next generation UAV by employing a 

simulation optimization approach.  The goal of this research is to maximize the number 

of targets destroyed in a conflict scenario by a newly designed UAV that is subject to 

size, weight, and budget constraints.  The solution approach involves the development of 

a simulation model representing a conflict scenario, which includes various types and 

quantities of targets, and weather conditions.  The model is used to test the effectiveness 

of various UAV configurations in detecting and destroying targets.  A tabu search meta-

heuristic is constructed to optimize the configuration of the UAV, in terms of the number 

and type of sensors, synthetic aperture radar, and weapons.   
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A SIMULATION OPTIMIZATION APPROACH TO THE DESIGN OF UNMANNED 

AERIAL VEHICLES 

 
 
 

I.  Introduction 
 
 
 
1.1 Background 

Simulation is a tool used to model and study complex systems.  Simulation can be 

performed prior to the development of the actual system or without changing the existing 

system.  A simulation receives a set of input values from the analyst, runs for a specified 

amount of time or number of replications, and outputs a performance measure. 

The goal of optimization is to determine the values for a given set of decision 

variables that maximizes or minimizes an objective function subject to constraints.  When 

optimization is applied to simulation, the resulting methodology is called simulation 

optimization.  Simulation optimization attempts to determine the simulation input values 

that maximizes or minimizes the simulation performance measure subject to problem 

constraints. 

In the past, a “Catch 22” existed in respect to simulation optimization (Glover et 

al. 1999).  Problems requiring simulation modeling were extremely complex.  The 

complexity of these models hindered the application of traditional optimization methods.  

However, newer optimization methods are now being applied to simulation successfully.  

Today, simulation optimization is applied in many different arenas including:  
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manufacturing, workforce planning, facility location and design, and financial planning 

(Glover et al. 1999).  For example, the use of simulation optimization in financial 

planning would allow analysts to determine what investments to make without risking the 

loss of an investor’s money. 

 
1.2 Research Motivation 

Simulation optimization can also be applied to resource allocation problems.  This 

application requires the simulation to describe a system in which the resources are the 

input parameters. The resources are allocated to processes according to the output of the 

optimizer.  The simulation runs for a specified amount of time or number of replications 

and outputs a performance measure.  Now, consider a problem in which the resources are 

modularized sensor and weapons packages.  These resources are being allocated to 

unmanned aerial vehicles (UAVs), specifically the Revolutionary Hunter/Killer 

(Rev/HK) UAV. 

The Rev/HK is a UAV concept that will perform both surveillance and strikes on 

targets of interest.  It is anticipated that the Rev/HK will provide an unmanned aircraft 

that is persistent, i.e. the aircraft can remain in flight for extended periods of time, 

survivable, and responsive to targets of interest.  Also, the Rev/HK design will 

incorporate technological advances in aircraft speed, stealth, and sensing capability 

(Morris 2006).   

Technological advances in sensing capability will be considered in this research.  

The following sensors may be included on the Rev/HK:  electro-optical (EO) sensors, 

infrared (IR) sensors, and synthetic aperture radar (SAR).  EO sensors can function 
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during the day and IR sensors can function during the day and night.  Both EO and IR 

sensors, which will be simply referred to as sensors, are limited in sensing capability 

during inclement weather (Chaput 2002).  SAR provides sensing capabilities during the 

day, night, and all weather conditions (Mileshosky 2005).   

 The sensors and weapons packages for the Rev/HK are modularized, allowing for 

different sensors and weapons to be used depending upon the simulated scenario.  

Because sensor packages represent “one of the single largest cost items in an unmanned 

aircraft,” sensors are assigned to a UAV not only based upon the probability of mission 

success but also within a specific budgetary constraint (“Unmanned Aircraft Systems 

Roadmap” 2005).  Additional constraints include a limitation on sensor weight and size.  

The weapons package distribution and the number of UAVs used in the simulation 

scenario will also be taken into account in this research. 

  
1.3 Research Objectives 

This research aims to develop and analyze the results of a simulation optimization 

framework for a resource allocation problem, specifically the Rev/HK problem.  This 

research will address the following objectives: 

1. Develop a methodology that incorporates both simulation and optimization into a 

resource allocation problem. 

2. Test the robustness of the methodology using design of experiments (DOE). 

3. Determine the optimal or near optimal input parameters given specific simulation 

scenarios. 
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1.4 Research Approach 

A simulation optimization approach will be used to ascertain the best sensor 

package, weapons distribution, and number of UAVs for a simulated scenario.  

Simulation optimization is an iterative process; the simulation describes a scenario in 

which the initial input parameters are a feasible combination of sensor and weapon 

components for a specified number of Rev/HK UAVs.  Given the mission goal of 

detecting and destroying targets, the simulation outputs the percentage of targets 

destroyed and the time required to achieve a solution.  An optimizer, in this case a tabu 

search metaheuristic, then changes the combination of sensors, weapons, and number of 

UAVs in an attempt to maximize the percentage of targets destroyed subject to size, 

weight, and budget constraints.  The tabu search metaheuristic provides the number of 

UAVs as well as a new set of sensor and weapon components as input parameters to the 

simulation.  The iterative process continues until the simulation is either run for a 

maximum amount of time, maximum number of iterations, or no longer achieves an 

improved solution within a specified number of iterations. 

 DOE will provide a method to test the robustness of the algorithm.  In the DOE, 

the tabu search parameters are factors, the different simulation scenarios are blocks, and 

the percentage of targets destroyed and the time required to achieve a solution are the 

responses.  The goal is to create an algorithm that is effective for various sizes of 

simulation scenarios.  To determine the best input parameter settings, the simulation 

optimization procedure is run at the robust tabu search parameter settings. 
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1.5 Research Impact 
 
 This research will provide a simulation optimization methodology for resource 

allocation problems, specifically, the Rev/HK problem.  The algorithms and computer 

code developed for the Rev/HK problem will serve as UAV development and design 

tools in the future.  Additionally, this solution approach can serve as an example to other 

researchers or analysts addressing similar problems.  The testing procedure will 

demonstrate how to develop a robust simulation optimization framework. 

 
1.6 Organization 

Chapter II provides an overview of the current literature relating to simulation 

optimization.  Chapter III outlines the specific simulation optimization methodology used 

in this research.  Chapter IV presents the results obtained from the implementation of the 

methodology discussed in Chapter III.  Chapter V provides concluding remarks and 

suggestions for future research.  Appendix A presents the tabu search MATLAB code 

used in this research effort. 
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II. Literature Review 

 
 

2.1 Introduction 

 Simulation optimization provides a means to determine the simulation input 

parameters that achieve optimal or near optimal simulation output.  This chapter 

describes current literature regarding simulation optimization.  Simulation optimization 

can employ a variety of optimizers that cater to the specifics of the problem being solved.    

Therefore, this chapter discusses optimization methods used in simulation optimization.  

This research will employ a tabu search metaheuristic as the optimization method; 

therefore, the specifics of the tabu search method will be described.  In order to use the 

tabu search metaheuristic in this research, different aspects of other optimizers are 

incorporated into the metaheuristic.  These aspects will be discussed in detail.  Finally, 

simulation optimization testing procedures will be explored. 

 
2.2 Simulation Optimization 
 

According to Banks (1998) simulation is  

the imitation of the operation of a real-world process or system over time.  
Simulation involves the generation of an artificial history of the system and the 
observation of that artificial history to draw inferences concerning the operating 
characteristics of the real system that is represented. 

 
A simulation model can incorporate the inherent uncertainties associated with real-world 

processes.  By including natural uncertainties, very complex models can be created and 

studied (Glover et al. 1999). 

 One question often encountered within the study of simulation is how does one 

determine the best settings for a simulation, i.e., what given set of inputs provides the 
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desired or best simulation output?  This question leads to the area of study known as 

simulation optimization.  Fu (2001) defines simulation optimization as the “optimization 

of performance measures based upon the outputs of stochastic…simulations.”  Fu (2002) 

further characterizes the optimization portion of simulation optimization as 

“optimization.”  The purpose of the quotation marks is to emphasize that the goal of the 

optimization procedure is provide new inputs that improve the outputs of the simulation; 

however, because of the stochastic nature of the simulation, there is “no way of knowing 

if an optimal has actually been reached” (Fu 2002). 

Fu et al. (2005) describe simulation optimization in terms of a general 

optimization model.  The goal of the general optimization model is “to find a setting of 

controllable parameters that minimizes a given objective function” (Fu et al. 2005).  

When the optimization problem is applied to simulation optimization, the goal remains 

the same; however, the objective function value is now estimated by the simulation 

model.  

 Simulation optimization is an iterative process.  The simulation model describes 

the system that is being studied.  Additionally, the simulation model provides outputs that 

are used to create the objective function that is evaluated by the optimizer (Fu 2002).  

The optimizer changes the simulation inputs with respect to the problem constraints in 

order to improve the output of the simulation (Fu 2001).  The process is continued for 

either a specified amount of time, a set number of iterations, or until an acceptable 

objective function value is reached.   

 Simulation optimization can prove to be computationally expensive.  Because of 

the iterative nature of the process, many objective function evaluations are required.  
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Each objective function evaluation requires the simulation to be run for a specified 

number of replications.  Therefore, a tradeoff is required between the “amount of 

computational effort needed to estimate the performance at a particular solution versus 

the effort in finding improved solution points” (Fu 2002).   

 
2.3 Optimization Methods 

The optimization techniques applied to simulation optimization problems have 

two requirements:  (1) the technique should provide convergence to an optimal solution 

even though there may be significant noise in the estimation of the desired performance 

measures and (2) the method should provide convergence in a reasonable amount of time 

(Andradóttir 1998).  The optimization methods can be divided into three categories:  

statistical procedures, stochastic optimization, and metaheuristics (Fu 2001).    

     2.3.1 Statistical Procedures 

 Ranking and selection (R&S) and sequential response surface methodology 

(RSM) are statistical optimization techniques that can be used in the simulation 

optimization framework.  R&S is applicable when considering a fixed set of 

configuration alternatives (Fu et al. 2005) where the number of configurations is 

relatively small, between two and 20 configurations (Goldsman and Nelson 1998).  R&S 

can also be used in conjunction with other simulation optimization methods.  R&S can be 

used as a screening method to reduce the number of configurations prior to simulation 

optimization (Fu et al. 2005).  Additionally, Boesel et al. (2003) propose a method in 

which R&S is used to “clean up” after simulation optimization.  This proposed method 
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determines the best configuration after a search based optimization method has been 

used.   

According to Kleijnen (1998), in order to perform simulation optimization using 

RSM, the sequential RSM technique must be used.  Sequential RSM creates a localized 

response surface and corresponding metamodel (April et al. 2003) using regression or 

neural networks (Fu 2002).  A search strategy is determined using the metamodel until a 

“linear fit is deemed adequate” (Fu 2001).  Next, additional points are simulated in order 

to estimate the optimum (Fu 2001). 

     2.3.2 Stochastic Optimization 

 Stochastic approximation and random search are stochastic optimization 

techniques.  Stochastic approximation, typically applied to continuous variable problems, 

is similar to the gradient search methods used in discrete optimization (April et al. 2003).  

However, because stochastic approximation mimics the gradient search method, it often 

finds local optima rather than the global optimum (Fu 2002).  Random search is an 

iterative process where the inputs change from the current point to somewhere in the 

neighborhood of that point (April et al. 2003).  Random search algorithms differ in 

respect to how the neighborhood is defined, how the next point is chosen, and how the 

optimal is estimated (Fu 2005). 

     2.3.3 Metaheuristics 

 Metaheuristics commonly used in conjunction with simulation optimization 

include:  genetic algorithms, simulated annealing, and tabu search.  This research will 

focus on the tabu search metaheuristic; therefore, tabu search will be discussed in detail 

in Section 2.4.  Genetic algorithms, introduced by Holland in 1975 (Mühlenbein 2003), 
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are “inspired by Darwinian theory” (Sait and Youssef 1999a).  The algorithm “emulates 

the natural process of evolution to perform … [a] systematic search … toward the 

optimum” (Sait and Youssef 1999a).   

The genetic algorithm begins with a set of solutions, known as the population.  

Within an iteration, two parent solutions recombine, or crossover, to create offspring.  

The offspring form the next generation of solutions (Banks et al. 2005).  The new 

solutions will hopefully provide better objective function values than those of the 

previous generations, resulting in the survival of the fittest.   

Simulated annealing is a metaheuristic based upon the physical annealing process.   

The physical annealing process is a “thermal process for obtaining low-energy states of a 

solid in a heat bath” (Aarts et al. 2003).  Kirkpatrick, Gelatt, and Vecchi applied the 

simulation of the physical process to optimization in 1983, resulting in the simulated 

annealing metaheuristic (Eglese 1990).   

The simulated annealing metaheuristic uses much of the same terminology as the 

physical annealing process.  The parameter, temperature, slowly decreases throughout the 

algorithm in an attempt to achieve a global minimum.  A cooling schedule determines 

how fast the parameter temperature decreases.  Additionally, the objective function that is 

evaluated describes the state of the system (Anandalingam 2001).  The simulated 

annealing metaheuristic accepts increases in the objective function value on a 

“probabilistic basis” in order to allow for different areas of the solution space to be 

evaluated (Sait and Youssef 1999c).   The consideration of different parts of the solution 

space occurs with the hope that the algorithm will drive the solution to the global 

minimum (Anandalingam 2001). 
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2.4 Tabu Search 

The tabu search metaheuristic, introduced by Glover in 1986, incorporates 

adaptive memory into the algorithm (Hertz et. al 2003).  Because adaptive memory is 

employed in the algorithm, one can clearly see how the origins of the tabu search 

metaheuristic lie in the logic of artificial intelligence and human thought (Sait and 

Youssef 1999d). 

     2.4.1 Tabu Search Terminology 

 In order to develop new solutions, the tabu search algorithm performs moves in 

specified neighborhoods.  Given a current solution, a move is an operation performed on 

the current solution to create a new solution (Glover and Laguna 1997).  Neighborhoods 

contain all of the potential moves that can be performed on the given solution (Sait and 

Youssef 1999b). 

In order to determine the next move, the tabu search algorithm searches through a 

neighborhood to determine quality moves (Glover and Laguna 1997).  After being 

considered by the algorithm, previous moves are stored in the tabu list.  While a move is 

considered tabu, the algorithm cannot perform the move again.  Moves located on the 

tabu list are considered tabu for a specified amount of time, which is known as the tabu 

tenure.  A tabu move is allowed when a specific condition, the aspiration criterion, is 

achieved (Sait and Youssef 1999d).  Often, the aspiration criterion dictates that a tabu 

move can be used if the resulting objective function value is the best thus far. 

Additional features of the tabu search algorithm include diversification and 

intensification.  Diversification allows the algorithm to explore different regions of the 
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solution space (Glover 2001).  An elite candidate list holds the solutions that have 

produced the best objective function value thus far.  Members of the elite candidate list 

are often used in the intensification process, allowing the algorithm to search around 

solutions that have previously resulted in quality objective function values (Hertz et. al 

2003). 

      2.4.2 Tabu Search Hybrid 

 This research uses a hybrid tabu search procedure as the optimizer in the 

simulation optimization methodology.  As previously stated, a pure tabu search 

metaheuristic searches through a neighborhood to find a quality move.  However, the 

metaheuristic used in this research uses random draws to determine the next move.  This 

is done because of the amount of computational effort required to determine the objective 

function of one move.  Note that in order to calculate a single objective function value, 

the simulation runs for a number of replications.  The random choice of moves within a 

neighborhood creates a tabu search hybrid utilizing the random draw aspects of random 

search and simulated annealing (Glover and Laguna 1997). 

 
2.5 Testing Procedures 

 According to Greenberg (1990), computational testing should be performed in 

order to ensure the “correctness of the model or algorithm, the quality of the solution, the 

speed of computation, and the robustness” of the model.  Additionally, Greenberg (1990) 

states that statistical analysis, through the use of design of experiments (DOE), can 

validate and verify a simulation model.   
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Hooker (1995) states that the current focus in developing metaheuristics is based 

on competition to see who can develop a newer, faster algorithm.  Hooker (1995) likens 

this competitive current testing procedure to a track race and deems it “anti-intellectual.”  

Instead of the track race approach, he suggests a statistical approach using DOE for 

testing heuristics.  Because DOE is a recommended procedure for testing both simulation 

and optimization it should work well in the simulation optimization framework.   In order 

to test the simulation optimization framework developed in this research, a full factorial 

DOE with blocking is utilized. 

2.6 Conclusion 

 This chapter describes simulation optimization as well as different optimization 

methods used in the simulation optimization framework.  Additionally, the key aspects of 

tabu search are explained and an adapted tabu search metaheuristic is described.  Finally, 

testing procedures for simulation optimization are explained. 
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III. Methodology 
 
 
 

3.1 Introduction 
 

Simulation models allow analysts and researchers to produce complex scenarios 

without changing the actual systems being modeled.  A tabu search metaheuristic, using 

adaptive memory to develop new solutions, can be incorporated into a simulation 

framework:   the result is an iterative simulation optimization methodology.  A simulation 

optimization methodology attempts to find the optimal or near optimal solutions to very 

complex real world problems.  The methodology presented in this chapter will apply the 

simulation optimization method to the Rev/HK problem. 

First, this chapter presents an overview of the simulation optimization 

methodology.  Next, the chapter provides a detailed explanation of the simulation that 

describes the flight and military actions associated with the Rev/HK UAVs.  

Additionally, an optimization formulation is described such that constraints are placed on 

the inputs to the simulation.  A tabu search algorithm is provided and different key tabu 

search terms and parameters are defined in respect to the problem.  Next, the testing 

procedure for the simulation optimization method is outlined.  Finally, an example 

problem is presented to demonstrate how the methodology is implemented.  

 
3.2 Simulation Optimization Overview 

Simulation optimization provides a methodology to determine the input 

parameters to be used in a simulation in order to produce optimal or near optimal 

simulation outputs.  The simulation optimization process is composed of two 
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components:  the stochastic simulation and the optimizer.  First, the simulation describes 

the process being studied.  The simulation requires input parameters to describe the 

scenario being evaluated.  The input parameters are typically provided by the analyst 

using the simulation.  The simulation is run for a specified amount of time or a set 

number of replications and outputs a performance measure.   

The goal of the optimizer is to provide a set of input parameters such that the 

simulation outputs the best possible performance measure.  The optimizer provides new 

sets of input parameters to the simulation based upon constraints defined by the problem.  

The optimizer views the output of the simulation as the objective function value.  As 

previously stated, simulation optimization is an iterative process.  The optimizer 

continues to provide new potential input parameter settings to the simulation until a 

defined stopping criterion is satisfied.  Figure 3-1, from Law (2007), provides a 

description of the simulation optimization process.   

 
Figure 3-1:  Simulation optimization process 
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3.3 Simulation Component 
 

The Rev/HK simulation, implemented in MATLAB, describes the combat 

scenario and the flight and military actions of the UAV.  Figure 3-2 provides a flowchart 

of the simulation. 

 
Figure 3-2:  Simulation flowchart 
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     3.3.1 Inputs 

There are two separate inputs to the simulation:  the configuration and scenario 

inputs.  Figure 3-3 provides a detailed view of the input components in the simulation 

flowchart.  The configuration inputs include the types of sensors and SAR included on 

the UAVs, the weapons distribution, and the number of UAVs.  The configuration inputs 

are discussed further in Section 3.5 and are displayed as (1) in Figure 3-3.  The scenario 

inputs describe the area of interest (AOI), target characteristics, weather conditions, flight 

pattern, maximum altitude, and maximum speed.  The target characteristics are 

represented by a two element array.  The first element is the target density, or the number 

of targets per square nautical mile.  The second element is the percentage of targets that 

are vehicles.  Weather conditions such as cloudy skies, fog, mist, haze, and rain can be 

modeled.  The scenario inputs are displayed as (2) in Figure 3-3. 

(1) Potential 
Solution 

Configuration

(2) Scenario 
Dependent 

Data
 

Figure 3-3:  Input portion of the simulation flowchart 

     3.3.2 Initializations 

 After the simulation receives the necessary inputs, different aspects of the 

simulation require initialization (provided in Figure 3-4, a detailed view of the 

initialization portion of the simulation flowchart):  the AOI (3), the weather conditions 

(4), the target positions (5), and the UAV potions (6).  The initialization of the AOI 

develops the area over which the targets will be scattered and the UAVs will search.  The 
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desired weather conditions and targets are randomly placed according to a uniform 

distribution throughout the AOI.  The initialization of the UAVs involves assigning their 

altitude, speed, search pattern, starting location, and sensor set.  Each UAV is assigned an 

identical sensor set.  Additionally, the UAVs are assigned identical SAR and weapons 

distributions that are configured in (7) and (8) of Figure 3-4, respectively.   

(3) Develop the 
Area of Interest 

(AOI)

(4) Initialize the 
Weather 

Conditions

(5) Initialize 
Target Positions

(6) Initialize 
UAV Positions

(7) Configure 
SAR

(8) Configure 
Weapons

 
Figure 3-4:  Initialization portion of the simulation flowchart 

     3.3.3 Target and UAV Position Update 

 After all initializations and assignments are made, the target (9) and UAV 

positions (10) are updated in Figure 3-5 (a detailed view of the position update portion of 

the simulation flowchart).  Target directions and movements are determined randomly.  

UAV movements are determined according to the given altitude, speed, and search 

pattern.   

 
Figure 3-5:  Update portion of the simulation flowchart 

     3.3.4 Sensor Update 

Next, the use of the EO/IR sensors is considered.  Figure 3-6 provides a detailed 

view of the sensor update portion of the simulation flowchart.  First, the sensor footprints 
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are updated (11 in Figure 3-6).  The sensor footprints represent the area of the AOI that 

the sensors can view.  Consider a simulation where one sensor is assigned to each UAV.  

The simulation will evaluate if a target is in the sensor’s field of view (FOV) (12 in 

Figure 3-6).  If weather does not impede the sensor’s capabilities and a target is in the 

sensor’s FOV, the sensor will track the target (13 in Figure 3-6); however, if a target is 

not in the sensor’s FOV, the simulation will continue to the next step and update the SAR 

footprint (18 in Figure 3-6).  If the target is tracked, the simulation will assign the target 

probabilities of detection, recognition, and identification based upon Johnson’s Criteria 

(14 in Figure 3-6) (Chaput 2002).  If the probability of identification is one, the UAV will 

drop a weapon on the target (15 in Figure 3-6); however, if the target is not identified, the 

simulation will move to the next step and update the SAR footprint (18 in Figure 3-6).  If 

a weapon is dropped, the target may or may not be destroyed (16 in Figure 3-6).  If the 

target is destroyed, the target status is updated to “killed” (17 in Figure 3-6) and the 

process continues to update the SAR footprint (18 in Figure 3-6).  However, if the target 

is not destroyed, the simulation will move to the next step and update the SAR footprint 

(18 in Figure 3-6).   



 
Figure 3-6:  Sensor update portion of the simulation flowchart 
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     3.3.5 SAR Update and Simulation Completion 

The SAR is evaluated in a similar fashion as the EO/IR sensors.  Figure 3-7 

provides a detailed version of the SAR update and simulation completion from the 

simulation flowchart.  First, the simulation determines if a target is in the SAR footprint, 

which is the area of the AOI that the SAR can view (19 in Figure 3-7).  If a target is not 

in the footprint, the simulation continues to the next step to determine if the simulation is 

complete, meaning that all UAVs have completed their search patterns (24 in Figure 3-7).  

However, if a target is in the footprint, the target is assigned a probability of detection, 

recognition, or identification according to the National Image Interpretability Rating 

Scale (20 in Figure 3-7) (Chaput 2002).  If the target is identified with a probability of 

one, a weapon is dropped on the target (21 in Figure 3-7); however, if the target is not 

identified, the simulation continues to the next step to determine if the simulation is 

complete (24 in Figure 3-7).  The SAR process now follows the exact same pattern as the 

sensor process.  The target may or may not be destroyed (22 in Figure 3-7).  If the target 

is destroyed, its status is updated to “killed” (23 in Figure 3-7).  The process next moves 

to the determination of whether or not the simulation is complete (24 in Figure 3-7).  If 

the simulation is not complete, the simulation will update the target positions (described 

in section 3.3.3) and the process will begin again. 

The simulation is run until all UAVs have completed their assigned search 

patterns or for a maximum number of iterations.  The simulation will output the 

percentage of targets destroyed (25 in Figure 3-7).  The output will be used as the 

objective function value in the optimization portion of the problem.        
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Figure 3-7:  SAR update portion of the simulation flowchart 

 

3.4 Optimization Component 
 
 The optimization problem associated with the previously described simulation is a 

mixed integer nonlinear program (MINLP).  The MINLP includes an objective function 

that maximizes the percentage of targets destroyed.  The objective function is subject to 

nine constraints, which include:  budget, size, SAR and sensor weight, weapon weight, 

number of UAVs, number of SAR, number of sensors, binary decision variables, and 

integer decision variables.  

     3.4.1 Optimization Assumptions 

Several assumptions have been made in the development of the MINLP.  The 

assumptions include: 
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1. In order to scope the problem, all UAVs will have the same SAR, sensor, and 

weapon configurations. 

2. In order to meet aircraft design standards, the total number of EO/IR sensors 

allowed on the aircraft is three and the total number of SAR allowed on the 

aircraft is one. 

3. Because sensor packages represent “one of the single largest cost items in an 

unmanned aircraft” (“Unmanned Aircraft Systems Roadmap” 2005), only SAR 

and EO/IR sensors will be considered in the budget constraint. 

4. Because weapons are given a specific weight limitation, weapon weight will be 

considered separately from the SAR and sensor weight.  Additionally, weapons 

will be included on the aircraft such that there is minimal slack in the weapon 

weight constraint.   

5.  Because weapon weight is treated differently than SAR and sensor weight, 

weapons will not be considered in the size constraint.        

      3.4.2 Notation  

 The notation for the optimization formulation is listed below. 

     Sets 

{ }1,  2, ...,  is the SAR typeI n=  

{ }1, 2, ...,  is the sensor typeJ m=  

{ }1, 2, ...,  is the weapon typeK l=  

     Decision Variables 

1,  if SAR type  is used
0,  otherwisei

i I
v

∈⎧
= ⎨
⎩
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1,  if sensor type  is used
0,  otherwisej

j J
w

∈⎧
= ⎨
⎩

  

 number of weapon type  usedkx k= ∈K  

 number of UAVsy =  

     Parameters 

 cost associated with SAR type i i Iα = ∈  

 cost associated with sensor type jc j= ∈ J

I

 

3size (ft ) of SAR type is i= ∈  

3 size (ft ) of sensor type j j Jδ = ∈  

 weight (lb) associated with SAR type i i Iγ = ∈  

 weight (lb) associated with sensor type j j Jβ = ∈  

budget allowance for a single UAVb =  

3 size allowance (ft ) for a single UAVS =  

 SAR and sensor weight allowance (lb) for a single UAVW =  

 weapon weight allowance (lb) for a single UAVA =  

 total budget allowance for all UAVsB =  

     Simulation Output 

 number of targets killedkillT =  

 total number of targetstotalT =  

     3.4.3 Optimization Formulation 

The MINLP associated with the simulation is described below.  Define the 

following maximization problem: 
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 Max  = kill

total

Tz
T

 (3.1) 

 
Subject to: 

 
1 1

I J

i i j j
i j

v c wα
= =

b+ ≤∑ ∑  (3.2) 

 
1 1

I J

i i j j
i j

s v w Sδ
= =

+ ≤∑ ∑  (3.3) 

 
1 1

I J

i i i i
i j

v wγ β
= =

W+ ≤∑ ∑  (3.4) 

 
1

K

k k
k

x Aω
=

≤∑  (3.5) 

 
1 1

I J

i i j j
i j

y v y c w Bα
= =

+ ≤∑ ∑  (3.6) 

 
1

1
I

i
i

v
=

≤∑  (3.7) 

 
1

3
J

j
j

w
=

≤∑  (3.8) 

 j and [0,1]  ,iv w i I j J∈ ∀ ∈ ∈  (3.9) 

  and integerk   x y k K∈ ∀ ∈  (3.10) 

As previously stated, the goal of the objective function, Equation (3.1), is to 

maximize the percentage of targets destroyed.  The objective function value is obtained 

by running 30 replications of the simulation.  The budget constraint, Constraint (3.2), 

sums the costs of the SAR and sensors used on the aircraft platform.  The cost must be 

less than or equal to the allowed budget for one UAV, denoted by b.  Constraint (3.3) 
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provides the size constraint.  The size constraint determines whether or not the SAR and 

sensors included on the platform are too large for the aircraft.  The size constraint does 

not take into account the physical shape of the aircraft but, rather, provides a general 

guideline for whether or not a SAR or sensor should be included on the platform because 

of its size.  The SAR and sensor weight constraint, Constraint (3.4), sums the weights of 

the SAR and sensors to be included on the aircraft.  The combined weight of the SAR and 

sensors should be less than or equal to the given weight allowance for a single UAV, 

defined as W.   

As noted in the list of assumptions, the weapons have a separate weight 

constraint, provided in Constraint (3.5).  Here, the sum of the weapons included on the 

aircraft should be less than or equal to the weapon weight allowance for a single UAV, 

denoted by A.  Constraint (3.6) is a nonlinear constraint that limits the total number of 

UAVs.  The number of UAVs, y, is multiplied by the cost of the SAR and sensors 

included on the platforms.  The cost should be less than or equal to the total allotted 

budget for all UAVs, defined by B.  Constraint (3.7) limits the number of SAR to one, 

and Constraint (3.8) limits the number of sensors to three.  Constraint (3.9) states that the 

decision variables for SAR and sensors are binary.  Therefore, if a SAR or sensor type is 

included on the platform, it is represented as a one.  If a SAR or sensor type is not 

included, it is represented as a zero.  Constraint (3.10) states that the decision variables 

for number of weapon types and number of UAVs are integer. 
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3.5 Tabu Search Algorithm 
 

A tabu search algorithm is used to perform the optimization portion of the 

simulation optimization procedure.  The pseudo-code for the tabu search algorithm 

applied to the Rev/HK problem is provided in Figure 3-8. 

• Generate a feasible starting solution, C, containing a EO/IR sensor set, SAR, weapons 
distribution, and the total number of UAVs 

• Set the initial best solution to C* = C 
• Calculate the percentage killed for C by running 30 simulation replications 
• Add initial solution to elite candidate list 
• FOR a set number of iterations 

o Choose a random number (rnd) 
o IF rnd ≤ Percentage determined through testing 

 Perform a diversification move (“Multi-Swap Move”) and determine a new 
feasible solution C’ that has a new set of sensors, SAR, weapons 
distribution, and number of UAVs 

o ELSE 
 Perform an intensification move (“Single Swap Move”) on a member of the 

elite candidate list and determine a new feasible solution C’ that has one 
different sensor 

o END IF 
o Determine the percentage killed for C’ by running the simulation with replications 
o IF the percentage killed for C’ < the percentage killed for C* 

 IF the tabu list is empty 
• Set C = C’ 
• Add the new elements to the tabu list 

 ELSE 
• Determine if any of the SAR or sensor types are tabu 
• IF none of the elements are tabu 

o Set C = C’ 
o Add the new SAR and sensor types to the tabu list 

• END IF 
 END IF 

o ELSE 
  Set  C = C’ 
 Add new SAR and sensor types to the tabu list 
 Set C* = C 
 Add C to the elite candidate list 

o END IF 
o After tabu tenure  

 Update tabu list 
• END LOOP 
• Return C*, the percentage killed associated with C*, and the run time associated with C* 
• Return the values associated with the weight, budget, and size constraints for the given C* 

Figure 3-8:  Tabu search pseudo-code 
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 3.5.1 Initial Input Parameters 

 In order to generate an initial parameter set, the tabu search algorithm calls a 

function named “initial parameters.”  First, “initial parameters” randomly chooses a set of 

sensors to consider.  The function then addresses the feasibility of the sensors chosen 

independently.  If a chosen sensor is feasible, it is added to the initial set of parameters 

until at most three sensors are added to the set.  Next, the function randomly chooses a set 

of SARs to consider.  Again, a feasibility check is required.  Note that at most one SAR 

can be included in the initial set of input parameters because of the constraint limiting the 

number of SARs to one. 

 Additionally, the function randomly determines the weapons configuration.  

According to assumption four provided in Section 3.4.1, there should be minimal slack in 

the weapon weight constraint.  Assume that there are three weapon types:  x1, x2, and x3.  

To determine the weapon distribution for the largest weapon type, x1, the function first 

draws a random number.  Next the function multiplies the random number by the total 

allowable weapon weight (A) and divides by the technological coefficient of the weapon 

type (ω1).  If this result is not an integer value, it is rounded down to the next integer 

value.  This integer value represents the number of weapon type x1 that are added to the 

platform.  Next, the weapon weight (A) is decremented by the weight associated with the 

weapons added.  This procedure is repeated for the second largest weapon type, x2.  The 

number of weapons for the last weapon type (x3) is determined by dividing the remaining 

weapon weight (A) by the corresponding technological coefficient (ω3) and rounding 

down to the nearest integer value.  Section 3.7.1 provides an example of these 

calculations.   
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 Finally, the “initial parameter” function randomly determines the number of 

UAVs to be used in the simulation.  First, the function determines the maximum number 

of UAVs that the total budget (B) can sustain.  The maximum is the floor of the total 

budget divided by the original budget minus the remaining budget.  The function draws a 

random integer between one and the maximum value.  The initial input parameter set is 

presented as an array with binary values representing the sensor and SAR types, where a 

one represents a sensor or SAR that is in use and a zero represents that a sensor or SAR 

that is not in use.  The array also contains integers representing the number of each 

weapon type and number of UAVs.    

3.5.2 Elite Candidate List 

Each set of input parameters is evaluated by the simulation to provide an 

objective function value.  The elite candidate list stores the initial set and its objective 

function value as well as additional parameter sets that have improving objective function 

values.  The elite candidate list holds a finite number of sets (which will be determined 

through experimentation); therefore, if there are more improving sets than locations on 

the list, the newer sets will overwrite the older sets.  The elite candidate list is used in the 

intensification portion of the algorithm.   

3.5.3 Intensification 

The tabu search algorithm calls the “single-swap move” function to perform the 

intensification process and develop a new set of input parameters.  The intensification 

process occurs a certain percentage of the time, which is determined through 

experimentation.  The algorithm randomly chooses a member of the elite candidate list to 

pass into the “single-swap move” function.  The function performs one feasible sensor 
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swap, i.e. the function exchanges a sensor currently in use for another feasible sensor, 

while maintaining the SAR configuration and the weapons distribution.  The number of 

UAVs remains the same unless the total budget (B) cannot support the number of UAVs 

from the elite candidate list solution.  If this is the case, the number of UAVs is changed 

to the maximum number of UAVs the budget can support. 

3.5.4  Diversification 

The tabu search algorithm calls the “multi-swap move” function to perform the 

diversification process and develop a new set of input parameters.  Similarly to the 

intensification process, the diversification process occurs a certain percentage of the time, 

which will be determined through experimentation.  The “multi-swap move” changes all 

of the configurations including the sensor set, the SAR, the weapons distribution, and the 

number of UAVs.  Additionally, the “multi-swap move” can vary the number of sensors 

included on the platform between one and three.   

Consider a solution created by the “initial parameter” function; the “multi-swap 

function” removes all sensors and SAR restoring the budget, size, and weight constraints 

to the original values.  Additionally, the values for the weapons distribution and number 

of UAVs are cleared.  The “multi-swap” function first randomly chooses the number of 

sensors to include on the platform, whereas the “initial parameter” function always 

includes three sensors on the platform.  Next, the function randomly chooses different 

feasible sensors and SAR to include on the platform.  The “multi-swap function” also 

determines a different weapons distribution and number of UAVs using the methods 

described in Section 3.4.1. 
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3.5.5 Tabu List 

The tabu list holds sensors and SAR used on the platform in the recent past.  The 

tabu tenure of a sensor or SAR is based upon the problem size.  A separate list, tabu time, 

keeps track of how long a sensor or SAR has been on the tabu list.  If the tabu time for a 

sensor or SAR equals the tabu tenure, the sensor or SAR is removed from the tabu list.  

Additionally, the tabu list contains the weapons configuration and the number of UAVs 

from the previous solution.  

A configuration containing a tabu sensor or SAR value and/or the same weapons 

configuration or number of UAVs as the previous solution will not be considered as a 

possible solution by the algorithm.  However, the aspiration criterion allows a 

configuration with the best objective function value yet evaluated to be considered as a 

possible solution.   

 
3.6 Testing Component 

 DOE is used to develop a robust simulation optimization algorithm.  Three tabu 

search parameters are chosen as factors in the design.  The factors are chosen such that 

any aspect of the tabu search procedure that requires an analyst decision is tested.  The 

DOE factors include:  (1) the maximum number of iterates, (2) the 

intensification/diversification percentage, and (3) the elite candidate list length.   Each 

factor will have a low level, a center point, and a high level.   

A 23 factorial is used with blocking, where each block represents a different 

conflict scenario.  The conflict scenarios are input into the simulation through the 

scenario inputs described in Section 3.3.1.  These inputs, especially, weather, AOI, and 

number and type of targets, define the problem size.  The responses recorded for the DOE 
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include the objective function value, or percentage of targets destroyed, and the run time 

for the scenario.  After the robust tabu search parameter settings are determined, 

simulation scenarios are run to determine the best input parameters.  

 
3.7 Example Problem 

In order to illustrate fully different aspects of the methodology, an example 

problem is described.  This example problem represents a single replication of the DOE 

with robust parameter settings.  The example problem consists of seven types of sensors, 

five types of SAR, and three types of weapons.  The notation provided in the example 

problem corresponds to that described in the optimization component in Section 3.4.2.  

The three weapon types have associated weights (ωk) of 500, 250, and 60 lb.   Table 3-1 

presents the technological coefficients associated with the five types of SAR. 

Table 3-1:  Example SAR technological coefficients 

 
 
Table 3-2 provides the technological coefficients for the seven sensor types. 
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Table 3-2:  Example sensor technological coefficients 

 
 
Table 3-3 provides the right-hand side values of the constraints. 

Table 3-3:  Example right-hand side values 

 

 The algorithm requires both scenario and configuration inputs.  Table 3-4 

provides the example scenario inputs.   

Table 3-4:  Example scenario inputs 

 

The initial configuration inputs are determined through the use of the “initial parameters” 

function in the algorithm. 
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     3.7.1 Example Initial Parameter Set 

The function “initial parameters” might choose to consider sensors 4, 7, and 2 

(provided in Table 3-2).  The function would first assess sensor 4 for feasibility.  Because 

sensor 4 meets the budget, weight, and size feasibility requirements, it is added to the 

initial solution, and the right-hand side values are decremented by the technological 

constraints associated with sensor 4.  The process is repeated for sensors 7 and 2.  

Because both of the sensors meet the feasibility requirements, the sensors are also added 

to the initial solution.  The remaining budget (b), size (S), and weight (W) values are now 

$27,500, 5 ft3, and 1400 lb, respectively. 

 Next, “initial parameter” attempts to add a SAR to the configuration.  Given the 

example problem, “initial solution” might choose SAR type 2 (Table 3-1).  SAR type 2 

undergoes the budget, size, and weight feasibility checks successfully.  Therefore, SAR 

type 2 is added to the initial solution and the remaining values for budget, size, and 

weight are $7,500, 3 ft3, and 1050 lb.   

 In order to determine the weapon distribution for the configuration, “initial 

parameter” follows the procedure outlined in section 3.4.1.  For the given example, let the 

random numbers be 0.50 and 0.20.  To determine the number of 500 lb weapons to be 

included on the aircraft, the following calculation is made: 

0.5*1500 lbNumber of 500 lb Weapons ( ) 1.
500 lb

⎢ ⎥= =⎢ ⎥⎣ ⎦
 

Next, the number of 250 lb weapons is determined using the following calculation: 
 

0.2*1000 lbNumber of 250 lb Weapons ( ) 0.
250 lb

⎢ ⎥= =⎢ ⎥⎣ ⎦
 

 
Finally, the number of 60 lb weapons is determined by the following calculation: 
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1000 lbNumber of 60 lb Weapons 16.
60 lb

⎢ ⎥= =⎢ ⎥⎣ ⎦
 

 Recall that the maximum number of UAVs is calculated by taking the floor of the 

total budget divided by the original budget minus the remaining budget.   In the case of 

the given example, the maximum number of UAVs is calculated as follows: 

$500000Maximum Number of UAVs 5.
$100000 $7500
⎢ ⎥= =⎢ ⎥−⎣ ⎦

 

The number of UAVs is randomly set between 1 and the maximum; therefore, for the 

example, the number of UAVs (y) is set to 3.  Figure 3-10 provides the initial parameter 

set for the example. 

 
Figure 3-10:  Example initial parameter set 

     3.7.2 Example Elite Candidate List and Intensification 

 To determine the objective function value associated with a input parameter set, 

the simulation is run for 30 replications.  The initial parameter set is stored in the elite 

candidate list.  Additionally, parameter sets with improving solutions are also stored in 

the elite candidate list.  Figure 3-11 provides an example elite candidate list that holds 

three solutions. 

 
Figure 3-11:  Example elite candidate list 

In order to perform intensification and create a new parameter set, let the first 

solution in the elite candidate list be passed into the “single-swap move” function.  The 
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function randomly chooses a sensor to delete from the configuration, such as sensor 2, 

and updates the budget, size, and weight constraints.  The “single-swap move” function 

then randomly chooses a new sensor to add to the configuration, such as sensor 1.  

Because sensor 1 is not currently in the sensor set and meets all of the feasibility 

requirements, it is added to the new solution.  Figure 3-12 compares the two solutions 

before and after the “single-swap move” is performed. 

 
Figure 3-12:  Example “single-swap move” 

     3.7.3 Example Diversification 

The diversification process creates a new set of parameters that is not 

intentionally related to any parameter set developed earlier in the algorithm.  The 

diversification process determines the number of sensors to include on the aircraft.  For 

the example, two sensors, such as sensor 6 and 3 (provided in Table3-2), are chosen to be 

included on the aircraft.  Because both sensors are feasible, sensors 6 and 3 are added to 

the solution configuration and the budget, size, and weight constraints are updated to 

$40,000, 5 ft2, and 1300 lb, respectively.    

The diversification also attempts to add a different SAR to the aircraft, for 

example, SAR type 3 (provided in Table 3-1).  SAR type 3 meets the budget, size, and 

weight constraints; therefore, SAR type 3 is added to the solution set.  The budget, size, 

and weight constraints are updated to $15,000, 2 ft2, and 800 lb, respectively.   
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For the example, the weapon distribution is changed to two 500 lb weapons and 

eight 60 lb weapons.  The total budget can support 5 UAVs; therefore, the algorithm 

randomly chooses a value of 4 UAVs.  Figure 3-13 provides an example comparison of 

the initial parameter configuration and the parameter configuration created by the “multi-

swap move.” 

 
Figure 3-13:  Example “multi-swap move” 

     3.7.4 Example Tabu List 

Figure 3-14 provides an example tabu list after the “initial parameters” and the 

“multi-swap move” functions are performed.  Additionally, the figure presents the tabu 

time list that keeps track of how long a sensor or SAR has been on the tabu list.  Assume 

the tabu tenure is greater than two iterations. 

 
Figure 3-14:  Example tabu list and tabu time list 

 The algorithm runs until it reaches a maximum number of iterations.  It then 

outputs the configuration with the highest objective function value, the maximum 

objective function value, and the time required to determine the objective function value.   
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3.8 Conclusion 

Simulation optimization is a technique that can be used to determine the best set 

of input parameters for a very complex system that is modeled via simulation.  This 

chapter provided a methodology that applied simulation optimization to the Rev/HK 

problem.  The simulation model of the Rev/HK flight and military actions was described 

in detail.  Additionally, the optimization formulation associated with the simulation was 

discussed.  This formulation was used to develop a tabu search metaheuristic that was 

tied into the simulation.  A testing procedure was outlined in order to develop a robust 

simulation optimization algorithm.  Finally, an example problem was provided to 

demonstrate the previously described methodology.  Chapter 4 will provide the results 

and analysis of the implementation of this methodology. 
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IV. Results and Analysis 
 
 
 

4.1 Introduction 

Simulation optimization provides a method to find the optimal or near optimal 

input parameters to complex simulations.  Simulation optimization can be applied to 

many types of problems including manufacturing, financial planning, and workforce 

planning.  The methodology presented in Chapter 3 provided a simulation optimization 

procedure to solve a resource allocation problem, specifically the Rev/HK problem.  This 

chapter will briefly review that methodology.  Additionally, it will next provide the 

designed experiment developed to test the methodology.  The results and analysis of this 

designed experiment are also provided. 

 
4.2 Simulation Optimization Applied to the Rev/HK Problem 

 The simulation optimization methodology developed in Chapter 3 involved a 

simulation that described the flight and military patterns of a Rev/HK UAV and a tabu 

search optimizer.  The goal of the simulation optimization procedure is to provide a set of 

input parameters to the simulation that maximizes the objective function, which is the 

percentage of targets destroyed.  The tabu search optimizer serves primarily as a way to 

check the feasibility of the input parameters and to store the input parameters that achieve 

the best objective function value.  The optimizer can either try to improve the objective 

function value by intensifying around input parameter sets stored in memory that have 

provided large objective function values in the past, or the optimizer can diversify by 

exploring new parameter settings. 
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The methodology provided in Chapter 3 first uses the tabu search optimizer to 

develop a feasible set of input parameters, specifically a set of EO/IR sensors, a SAR, a 

weapons distribution, and the total number of UAVs, to use in the simulation.  The input 

parameters must meet budgetary, size, and weight constraints for each UAV and a 

budgetary constraint for the UAV fleet as a whole.  Thirty simulation replications are run 

using the input parameters provided by the tabu search and the percentage of targets 

destroyed and the simulation run time are recorded.  Next, the procedure is repeated using 

a new set of feasible input parameters provided by the tabu search optimizer.  The 

process continues until a maximum number of iterations is reached.  Figure 4-1 outlines 

the simulation optimization procedure applied to the Rev/HK problem. 

 

Figure 4-1:  Simulation optimization applied to the Rev/HK problem 
 

4.3 Data 

In order to test the simulation optimization methodology, cost, weight, and size 

data relating to fifteen sensors and 7 SARs are collected.  This data is used in the 

methodology to determine the feasibility of different sensor and SAR combinations.  
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Additionally, characteristics relating to the sensor and SAR functionality, specifically the 

sensor or SAR resolution, are recorded.  Table 4-1 provides the technological coefficients 

and resolution associated with each SAR.  SAR resolution improves as the resolution 

value decreases; therefore, SAR 3 has the best resolution (1 ft), while SAR 4 has the 

worst resolution (5 ft). 

Table 4-1:  SAR technological coefficients and resolution 

 

Table 4-2 provides the technological coefficients associated with the different sensor 

types.  Additionally, the table provides the resolution associated with each sensor.  Sensor 

resolution improves as the resolution value increases.  Therefore, sensors 1, 8, and 15 

have the best resolution (1280 x 720), while sensors 3, 6, and 14 have the worst 

resolution values (360 x 240). 
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Table 4-2:  Sensor technological coefficients and resolution 

 

Table 4-3 presents the right-hand side values for the constraints. 

Table 4-3:  Right-hand side values 

 

Additionally, three weapon types are included in the model, with the associated weights 

of 500, 250, and 60 lb.     

 
4.4 Designed Experiment 

In order to ensure the methodology developed in Chapter 3 is robust, design of 

experiments (DOE) is used to determine the appropriate tabu search parameters.  Three 

tabu search parameters,  (1) the intensification/diversification percentage, (2) the elite 

candidate list length, (3) and the maximum number of iterates, are factors in the 
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experiment and are tested at low, center point, and high levels.  Three replicates o

23 factorial design with 12 blocks, where each block represents a conflict scenario, are 

performed.   

     4.4.1 Fact

f a full 

or Levels 

arch parameters that are viewed as factors in the DOE are tested 

00%, respectfully.  

s 

e 

 

all 

so that 

 

t 

 The three tabu se

at low, center point, and high levels.  The low, center point, and high 

intensification/diversification percentage levels are 75%, 87.5%, and 1

These factor level values are chosen to test the whether or not the algorithm should only 

diversify or if the algorithm should include both intensification and diversification.  

Recall from Section 3.5, the tabu search procedure will perform diversification move

when the random number rnd is less than or equal to the intensification/diversification 

percentage.  Therefore, a 100% intensification/diversification percentage ensures that th

algorithm will only perform diversification moves.  The 100% setting will allow a wider 

range of parameter settings to be tested.  A broader range of parameter settings will allow

more of the solution space to be searched, which may prove beneficial because of the 

computational time required to perform the simulation optimization procedure.  

The elite candidate list length factor level values are chosen to be relatively sm

the solutions stored in the elite candidate list truly represent the best solutions 

generated by the algorithm.  The elite candidate list length ranges from three at the low

level to four at the center point to five at the high level.  However, the elite candidate lis

will only affect the model if the intensification/diversification percentage is less than 

100%.   
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The maximum number of iterates factor level values are chosen such that a 

sufficient number of tabu search iterations occur while maintaining a reasonable 

computational run time.  The maximum number of iterates has a low level of 20, a center 

point of 25, and a high level of 30.  The DOE factors and factor levels are presented in 

Table 4-4. 

Table 4-4:  Factor and factor levels for Rev/HK DOE 

 

     4.4.2 Blocking 

 The blocks in the DOE represent different simulation scenarios.  The simulation 

scenarios consist of the following inputs:  AOI, target characteristics, weather conditions, 

flight pattern, maximum altitude, and maximum speed.  The scenario inputs, specifically, 

AOI, target characteristics, and weather conditions, are used to define the problem size.  

A total of twelve scenarios are developed by varying these inputs:  the AOI can be small 

(5 nmi by 5 nmi), medium (10 nmi by 10 nmi), or large (15 nmi by 15 nmi); the weather 

can either be good (clear skies) or bad (rain); and the target density of vehicles can be 

either 20% of targets per nmi2 or 50% of targets per nmi2.  Table 4-5 lists the 12 possible 

scenarios. 
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Table 4-5:  Simulation scenarios 

 

The remaining scenario inputs are the same for all scenarios.  All scenarios use a 

zamboni, S-shaped, search pattern, a maximum altitude of 10,000 ft, and a maximum 

speed of 400 knots.  Note the maximum altitude is less than the minimum service ceiling 

of 15,000 ft for the Rev/HK UAV.  The choice of a lower altitude was made deliberately.  

Because the EO/IR sensors are attached to the UAV at an angle, a higher altitude would 

require a much larger AOI in order to include the areas being viewed by the sensors.  

Very large AOIs are much more computationally expensive than the AOIs tested; 

therefore, a lower altitude allowed for experimentation across AOIs of different sizes, 

while maintaining a reasonable simulation optimization run time. 

Animation is employed to allow the analyst to view the simulation as it is run.  

Figure 4-2 presents the animation associated with the simulation using simulation 

scenario four.  There is one UAV, denoted by *, that is equipped with one EO/IR sensor 

(the red box in front of the UAV) and one SAR (the pink box around the UAV).  The 

UAV’s path is marked by a dashed line.  The large boxes within the AOI are clouds/rain 

and the small boxes are targets. 
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Figure 4-2:  Example simulation animation 
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   4.4.3 Experiment 

 A total of 36 runs are required to test the three factors at the low, center point, and 

high levels using 12 blocks.  Table 4-6 presents the experiment. 

Table 4-6:  Design of experiments for the Rev/HK problem 
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4.5 DOE Results 

Table 4-7 provides the results of the REV/HK DOE. 

Table 4-7:  DOE results 
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An analysis of each the response is performed.  The model for the percentage of 

targets killed is determined to be significant; however, the model for simulation run time 

is determined to be statistically insignificant.  Figure 4-3 displays a half normal 

probability plot of the effects associated with the response percentage of targets killed.  

Note that factors, B (elite candidate list length), C (maximum number of iterations), and 

interaction AB are deemed significant, and, therefore, will be included in the model.  

Additionally, factor A (intensification/diversification percentage) must be included in the 

design for hierarchal purposes. 

 
Figure 4-3:  Half normal probability plot 
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Table 4-8 provides the analysis of variance (ANOVA) for the response percentage 

of targets killed.  Note that the p-values highlighted in bold are all less than 0.05 and are 

associated with the significant factors (the model, B, C, and the interaction effect, AB).   

Table 4-8:  ANOVA for the percentage of targets killed 

 

Although the p-value for factor A is greater than 0.05, the factor is included in the model 

because of hierarchal purposes.  Additionally, recall that factor A is the 

intensification/diversification percentage and factor B is the elite candidate list.  As 

previously stated in Section 4.4.1, factor B is included in the model only if factor A is 

less than 100%.  This relationship is a contributing factor to the significance of the 

interaction term.   

 The model for predicting the percentage of targets killed is  

 . ˆ 2.80616 2.88482 A 0.70378 B 0.013659 C 0.72823 ABy = − ∗ − ∗ + ∗ + ∗

The R2 and R2-adjusted for the model are 0.5427 and 0.4464, respectively.  Therefore, the 

model explains 44.64% of the system variability when adjusted for degrees of freedom.  

The relatively low adjusted R2 value can be explained by the stochastic nature of the 

simulation optimization process. 

 In order to maximize the percentage of targets killed, numerical optimization 

using the prediction model determines that the factor levels A, B, and C are set to 75%, 3, 
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and 30, respectively.  These tabu search parameters are the robust parameter settings that 

will be used to develop the input parameters for different scenarios evaluated by the 

model.   The robust tabu search parameter settings result in an algorithm that diversifies 

75% of the time.  However, the algorithm does intensify around one of the three elite 

candidate list parameter sets 25% of the time.  Additionally, by setting the maximum 

number of iterations to 30, one ensures that the algorithm is allowed to perform more 

tabu search iterations throughout the solution space. 

 
4.6 Input Parameter Settings 
 

In order to demonstrate the ability of the algorithm to determine input parameter 

settings, scenarios one through four (presented in Section 4.4.2) are tested using the 

robust tabu search parameter settings.  Table 4-9 presents the results of these tests, 

including the percent of targets killed, the simulation run time, and the input parameter 

settings. 

Table 4-9:  Results Using the Robust Tabu Search Parameter Settings 

 

Each input parameter set only has a single sensor.  The sensors that are included 

on the aircraft are sensors 1, 8, and 15.  Recall, from Section 4.3, that all of these sensors 

have the highest resolution available.  Additionally, sensors 1, 8, and 15 are the most 

expensive sensors available; however, because only one sensor is used per UAV, the 
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overall sensor cost per UAV may be less than the cost associated with including two or 

three sensors with lower resolution on a UAV. 

 The SAR included on the UAVs for scenarios one through four are SARs 4 and 7.  

SAR 4 has a resolution of 5 ft and a cost of $4.9 M and SAR 7 has a resolution of 2 ft and 

a cost of $7.1 M.  The weapons distributions vary from two 500 lb weapons, one 250 lb 

weapon, and four 60 lb weapons for scenario one, to two 500 lb weapons and eight 60 lb 

weapons for scenarios two and three, to five 250 lb weapons to four 60 lb weapons for 

scenario four.   

The number of UAVs also varies across the four scenarios.  Scenario one requires 

eight UAVs.  Scenarios two and three use four UAVs, and scenario four requires five 

UAVs. 

 
4.7 Conclusion 
 

The simulation optimization methodology applied to the Rev/HK problem 

incorporates a simulation of the Rev/HK UAV and a tabu search optimizer to determine 

the optimal or near optimal simulation input parameter settings.  This chapter provided 

the data required to perform the testing component of the methodology described in 

Chapter 3.  Additionally, the designed experiment, including the factor levels, the 

blocking component, and the layout of the experiment, was provided and discussed.  The 

results of this experiment were presented and analysis, including a half normal 

probability plot and an ANOVA table, was provided.  From this analysis, the robust tabu 

search parameter settings were determined.  Finally, using the robust tabu search 

parameter settings, the input parameter settings for four simulation scenarios were 
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determined.  Chapter five provides concluding remarks and a discussion of future 

research opportunities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53 



V. Conclusion and Recommendations 
 
 
 

5.1 Introduction 

 Simulation optimization is a methodology that combines two cornerstones of 

operations research:  simulation and optimization.  The goal of simulation optimization is 

to determine the simulation input parameters that provide optimal or near optimal 

simulation performance measures.  Simulation optimization is currently applied to 

problems in manufacturing, workforce planning, facility layout and design, and financial 

planning (Glover et al. 1999). 

This research provided a simulation optimization methodology to solve resource 

allocation problems.  Specifically, this research addressed the allocation of EO/IR 

sensors, SAR, and weapons to the Rev/HK UAV.  In order to apply the simulation 

optimization methodology to the Rev/HK problem, a simulation of the flight and military 

actions of the Rev/HK UAV was developed in MATLAB.  A tabu search metaheuristic 

operated as the optimizer, providing the simulation with feasible input parameter sets.  

DOE was employed to develop a robust simulation optimization procedure. 

 
5.2 Conclusion 
 
 This research effort addressed all objectives presented in Chapter 1.  The 

objectives of this thesis are: 

1. Develop a methodology that incorporates both simulation and optimization into a 

resource allocation problem. 

2. Test the robustness of the methodology using design of experiments (DOE). 
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3. Determine the optimal or near optimal input parameters given specific simulation 

scenarios. 

The first objective was addressed in Chapter 3.  A simulation model describing 

the flight and military actions of the Rev/HK UAV was discussed in detail.  Additionally, 

Chapter 3 presented an optimization formulation using the simulation output as the 

objective function and placing constraints on the simulation input parameters.  A tabu 

search metaheuristic implemented the optimization formulation and tied together the 

simulation and optimization portions of the problem. 

The methodology developed in Chapter 3, including the algorithms and computer 

code, can be used as a decision support tool for UAV development and design.  

Additionally, the methodology provides other researchers and analysts an example of 

how to apply simulation optimization to a resource allocation problem. 

The second objective was addressed in Chapter 4.  The data required to perform 

the designed experiment were provided.  Additionally, the designed experiment, 

including the factors, factor levels, blocking component, and experiment layout, was 

described.  The results of the designed experiments were reported and analysis was 

performed.  The analysis resulted in determining the robust tabu search parameter 

settings.  The development of robust tabu search design parameters demonstrates how 

researchers and analysts can successfully apply DOE to the simulation optimization 

framework. 

 The third and final objective was also addressed in Chapter 4.  Using the robust 

tabu search parameter settings, the input parameter settings for four simulation scenarios 

were determined.  The development of sensor, SAR, and weapon configurations can be 
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used by the developers of the Rev/HK UAV when determining which sensors, SAR, and 

weapons to purchase and utilize.  Additionally, the implementation of the algorithm can 

determine the size of the UAV fleet needed to achieve the optimal or near optimal 

percentage of targets killed.  

 
5.3 Future Research 
 
 This research effort has not only addressed the research objectives proposed in 

Chapter 1 but has also provided additional research opportunities.  First, the simulation 

model provided describes the actions of the Rev/HK UAV and the space in which the 

UAV operates.  This space is described by the area of interest, the target characteristics, 

and weather conditions.  Additional fidelity can be added to the simulation by adding 

aspects such as terrain and manmade structures to further describe the space in which the 

UAV operates.  Increasing model fidelity will allow the simulation model to better 

describe the simulation scenario; however, increased fidelity will also increase the 

computational time required to complete the simulation optimization process. 

 Currently, the optimization component of the problem includes a budget 

constraint for each UAV.  It is possible this constraint could be removed, allowing for the 

number of UAVs in the fleet to be reduced and the development of a UAV that includes 

the most advanced sensors and SAR available.  Additionally, in order to scope the 

problem, the proposed model assumes that all UAVs in the fleet have the same sensor 

configuration, SAR configuration, and weapons distribution.  However, it may be 

beneficial to develop a problem formulation that allows the UAVs in the fleet to have 

different sensor configurations, SAR configurations, and weapons distributions. 
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Appendix A. Tabu Search MATLAB Code 

 
A.1 Tabu Search 
 
%Perform tabu search 
  
%load data 
load('X.mat'); 
load('Y.mat'); 
load('NIIRS_data.mat'); 
load('SAR_data.mat'); 
load('SAR_truck_data.mat'); 
load('SAR_infantry_data.mat'); 
  
%Constraint Parameters 
total_budget = 40; %budget for UAV fleet 
budget = 9;  %budget for a single UAV 
weight = 1000; %payload weight allowance 
size = 10;  %payload size allowance 
weapon_weight = 1500; %weapon weight allowance  
  
%Tabu Search Parameters 
div_per = 0.75; %percentage of the time requiring diversification 
max_els = 3; %length of elite candidate list 
MAX_IT = 30; %maximum number of iterations 
   
%Simulation Parameters  
area = [5 5];  %aoi configuration   
weather_conditions = [0 0];  %weather configuration  
search_pattern = 2;  %search pattern 
max_alt = 10000;  %max altitude 
max_speed = 400;  % max speed 
targ = [.20 100];  % target configuration setup targets by:      

[target_density percentage_vehicle] 
sim_weapon_weight = 1500; %weapon weight allowance 
k = 1; 
elite_list_size = 1; 
n = length(X);  %input X 
m = length(Y);  %input Y 
w = 3;  %number of weapon types 
sensors = zeros(1,n); 
SAR = zeros(1,m); 
best_sensors = zeros(1,n); 
current_sensors =zeros(1,n); 
best_SAR = zeros(1, m); 
current_SAR = zeros(1,m); 
elite_list = zeros(max_els,n+m+w+2); 
tabu = zeros(1,n+m+w+1); 
tabu_time = zeros(1,n+m); 
no_sensors = 0; 
weapons = zeros(1, w); 
best_weapons = zeros(1,w); 
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current_weapons = zeros(1,w); 
weapon_tabu = zeros(1, w); 
no_SAR = 0; 
%create initial solution 
[sensors, tabu, budget, weight, size, SAR, weapons, no_uav, 
orig_budget, tabu_time] = initial_parameters(X, Y, budget, weight, 
size, sensors, SAR, weapons, tabu, tabu_time, n, m, w, no_sensors, 
no_SAR, weapon_weight, total_budget); 
 
%evaluate initial feasible solution 
best_sensors = sensors; 
best_SAR = SAR; 
current_sensors = sensors; 
current_SAR = SAR; 
  
%Run simulation 
[pk, sim_time] = Run_simulation(area, weather_conditions, 
search_pattern, max_alt, max_speed, targ, sim_weapon_weight, sensors, 
SAR, weapons, n, m, SAR_data, NIIRS_data, SAR_infantry_data, 
SAR_truck_data, no_uav);    
 
current_pk = pk; 
best_pk = pk; 
best_time = sim_time; 
  
%Add intial solution to elite list 
elite_list(elite_list_size,(1:n))  = sensors;  
elite_list(elite_list_size,(n+1:n+m)) = SAR;   
elite_list(elite_list_size,(n+m+1: n+m+w)) = weapons; 
elite_list(elite_list_size, n+m+w+1) = no_uav; 
elite_list(elite_list_size, n+m+w+2) = pk; 
 
for k = 2:MAX_IT 
    
    tabu_item = 0; 
     
    for i = 1:(n+m) %update the amount of time a sensor or SAR has been 

on the tabu list 
        if tabu_time(i) > 0 
            tabu_time(i) = tabu_time(i)+1; 
        end 
    end 
     
    if rand < div_per  %diversification 
        [sensors, budget, weight, size, new_sens, r, SAR, new_SAR, 

weapons, no_uav] = multi_swap(X, Y, sensors, SAR, budget, 
weight, size, n, m, w, weapons, weapon_weight, no_uav, 
orig_budget, total_budget); 

        type = 3; 
    else  %intensification 
        intensify = unidrnd(elite_list_size, 1, 1); 
        sensors = elite_list(intensify,(1:n));  %Intensify around 

solution in elite 
candidate list 
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        SAR = elite_list(intensify,(n+1:n+m)); 
        weapons = elite_list(intensify, (n+m+1:n+m+w)); 
        no_uav = elite_list(intensify, (n+m+w+1)); 
        [sensors, budget, weight, size, new_sens, r, no_uav] = 

single_swap(X, sensors, budget, weight, size, n, orig_budget, 
total_budget, no_uav); 

        type = 1; 
    end 
     
 %Run simulation 
    [pk] = Run_simulation(area, weather_conditions, search_pattern, 

max_alt, max_speed, targ, sim_weapon_weight, sensors, SAR, weapons, 
n, m, SAR_data, NIIRS_data, SAR_infantry_data, SAR_truck_data, 
no_uav);   

      
    if pk < best_pk  %aspiration criteria not met 
        if isequal(tabu(1:n+m), zeros(1,n+m)) 
            current_sensors = sensors; %New sensor set is not tabu and 

set to the current sensor set 
            current_SAR = SAR;  %New SAR set is not tabu and set to the 

current SAR set 
            current_weapons = weapons;  %New weapons set is set to the 

current weapons set 
            current_pk = pk; 
             
            for j = 1:r 
                tabu(new_sens(j)) = 1;  %Set new sensors to tab  u
                tabu_time(new_sens(j)) = 1; %Set tabu time to 1 
            end 
            if type == 3 
                tabu(n + new_SAR(1)) = 1;  %Set new SAR to tabu 
                tabu_time(n + new_SAR(1)) = 1; %Set tabu time to 1 
            end  
            for l = 1:w 
                tabu(n+m+l) = weapons(l);  %Set new weapons set to tabu 
            end 
            tabu(n+m+w+1)= no_uav; %Set number of UAVs to tabu 
        else 
            for i = 1:r 
                if tabu(new_sens(i)) == 1  %New sensor set is tabu 
                    tabu_item = 1; 
                    break 
                end 
            end 
            if type == 3 
                if tabu(n + new_SAR(1)) == 1  %New SAR is tabu 
                    tabu_item = 1; 
                end 
            end 
            if tabu_item == 0 
                current_sensors = sensors;  %New sensor set is not tabu 
                current_SAR = SAR;  %New SAR is not tabu 
                current_weapons = weapons;  %New weapons set is set to 

the current weapons set 
                for j = 1:r 
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                    tabu(new_sens(j)) = 1;  %Set new sensors to tabu 
                    tabu_time(new_sens(j)) = 1; %Set tabu time to 1 
                end 
                if type == 3 
                    tabu(n + new_SAR(1)) = 1;  %Set new SAR to tabu 
                    tabu_time(n + new_SAR(1)) = 1; %Set tabu time to 1 
                end  
                for l = 1:w 
                    tabu(n+m+l) = weapons(l);  %Set new weapons set to 

tabu 
                end 
                tabu(n+m+w+1)= no_uav; %Set number of UAVs to tabu 
            end 
         end 
    else %aspiration criteria met 
         
        current_sensors = sensors; 
        current_SAR = SAR; 
        current_weapons = weapons; 
        best_sensors = sensors;  %New sensor set provides an 

improvement 
        best_SAR = SAR;  %New SAR provides an improvement 
        best_weapons = weapons;  %New weapons provides an improvement 
        last_best = best_pk; 
        elite_list_size = elite_list_size + 1; 
         

  %Update elite list 
        if elite_list_size <= max_els   
            elite_list(elite_list_size,(1:n))  = current_sensors; 
            elite_list(elite_list_size,(n+1:n+m)) = current_SAR; 
            elite_list(elite_list_size,(n+m+1:n+m+w)) = 

current_weapons; 
            elite_list(elite_list_size,n+m+w+1) = no_uav; 
            elite_list(elite_list_size,n+m+w+2) = pk; 
        else 
            elite_list_size = 1; 
            elite_list(elite_list_size,(1:n))  = current_sensors; 
            elite_list(elite_list_size,(n+1:n+m)) = current_SAR; 
            elite_list(elite_list_size,(n+m+1:n+m+w)) = 

current_weapons; 
            elite_list(elite_list_size,n+m+w+1) = no_uav; 
            elite_list(elite_list_size,n+m+w+2) = pk; 
        end 
        best_pk = pk;   
        best_time = sim_time; 
        for j = 1:r 
            tabu(new_sens(j)) = 1;  %Set new sensors to tab  u
            tabu_time(new_sens(j)) = 1; %Set tabu time to 1 
        end 
        if type == 3 
            tabu(n + new_SAR(1)) = 1;  %Set new SAR to tabu 
            tabu_time(n + new_SAR(1)) = 1; %Set tabu time to 1 
        end  
        for l = 1:w 
             tabu(n+m+l) = weapons(l);  %Set new weapons set to tabu 

60 



        end 
        tabu(n+m+w+1)= no_uav; %Set number of UAVs to tabu 
    end 
    for i = 1:(n+m) 
        if tabu_time(i) == 3  %Tabu tenure 
            tabu(i) = 0; 
        end 
    end 
end 
%End tabu search 
 
 
A.2 Initial Solution 
 
%create an initial feasible solution 
 
function [sensors, tabu, budget, weight, size, SAR, weapons, no_uav, 
orig_budget, tabu_time] = initial_parameters(X, Y, budget, weight, 
size, sensors, SAR, weapons, tabu, tabu_time, n, m, w, no_sensors, 
no_SAR, weapon_weight, total_budget) 
  
SAR_tabu = zeros(1, m); 
sens_tabu = zeros(1,n); 
weapon_tabu = zeros(1, w); 
orig_budget = budget; 
 
%EO/IR sensors 
new_sens = unidrnd(n,1,n);  %Generate a size n array with a list of 

sensors 
for i = 1:n     
        if X(new_sens(i),1) <= budget  %Sensor meets budget constraint 
            if X(new_sens(i),2) <= weight  %Sensor meets weight 

constraint 
                if X(new_sens(i),3) <= size  %Sensor meets size 

constraint 
                    sensors(new_sens(i)) = 1;  %Add new sensor to 

sensor array 
                    budget = budget - X(new_sens(i),1);  %Update budget 
                    weight = weight - X(new_sens(i),2);  %Update weight 
                    size = size - X(new_sens(i),3);  %Update size 
                    sens_tabu(new_sens(i)) = 1;  %Update sensor tabu 

list 
                    no_sensors = no_sensors +1;  %Update number of 

sensors 
                end 
            end 
        end 
        if no_sensors == 3  %Three sensors have been added to the UAV 
            break 
        end 
end 
  
%SAR 
new_SAR = unidrnd(m,1,m);  %Generate a size m array with a list of SAR 
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for j = 1:m 
        if Y(new_SAR(j), 1) <= budget  %SAR meets budget constraint 
            if Y(new_SAR(j), 2) <= weight  %SAR meets weight constraint 
                if Y(new_SAR(j), 3) <= size  %SAR meets size constraint 
                    SAR(new_SAR(j)) = 1;  %Add new SAR to SAR array 
                    budget = budget - Y(new_SAR(j), 1);  %Update budget 
                    weight = weight - Y(new_SAR(j), 2);  %Update weight 
                    size = size - Y(new_SAR(j), 3);  %Update size 
                    SAR_tabu(new_SAR(j)) = 1;  %Update SAR tabu list   
                    no_SAR = no_SAR +1;  %Update number of SAR 
                end 
            end 
        end 
        if no_SAR == 1  %One SAR has been added to the UAV 
            break 
        end 
end 
  
%Weapons 
weapon_500 = floor((weapon_weight*rand())/500);  %Determine number of 

500 lb weapons 
weapon_weight = weapon_weight - 500*weapon_500;  %Update weapon weight 
weapon_250 = floor((weapon_weight*rand())/250);  %Determine number of 

250 lb weapons 
weapon_weight = weapon_weight - 250*weapon_250;  %Update weapon weight 
weapon_60 = floor(weapon_weight/60);  %Determine number 60 lb weapons 
weapons = [weapon_500, weapon_250, weapon_60]; 
weapon_tabu = weapons; 
  
%Number of UAVs 
max_no_uav = floor(total_budget/(orig_budget-budget)); 
no_uav = unidrnd(max_no_uav,1,1); 
  
%end initial feasible solution 
tabu = [sens_tabu(1,:), SAR_tabu(1,:), weapon_tabu(1,:), no_uav];  
%Update global tabu list 
  
for i = 1:(n+m) %Update tabu time 
    if tabu(i) == 1 
        tabu_time(i) = 1; 
    end 
end 
  
return 
%End initial solution 
 
 
A.3 Diversification 
 
%Start multi-swap diversification 
function [sensors, budget, weight, size, new_sens, r, SAR, new_SAR, 
weapons, no_uav] = multi_swap(X, Y, sensors, SAR, budget, weight, size, 
n, m, w, weapons, weapon_weight, no_uav, orig_budget, total_budget) 
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%Perform a diversifying swap 
orig_weapon_weight = weapon_weight; 
SAR_record = zeros(1,1); 
record = zeros(1,3); 
j = 1; 
s = 1; 
  
different = 0; 
%change sensors 
for i = 1:n 
    if sensors(i) == 0 
    else 
        sensors(i) = 0;  %Remove sensor from list 
        budget = budget + X(i, 1);  %Update budget 
        weight = weight + X(i, 2);  %Update weight 
        size = size + X(i, 3);  %Update size 
        record(j) = i; 
        j = j + 1; 
    end  
    if  j == 4  %Three sensors have been removed 
        break  
    end 
end 
while different == 0 
    r = unidrnd(3,1,1);  %Choose the number of sensors to include 
    new_sens = unidrnd(n,1,r);  %Generate r new sensors 
    different = 1; 
     
    for k = 1:j-1 
        for l = 1:r 
            if record(k) == new_sens(l)  %The new sensors are the same 

as those removed 
                different = 0; 
                break 
            end 
        end 
    end 
  
    if r == 3 
        if (new_sens(1) == new_sens(3)) || (new_sens(2) == new_sens(3)) 
            different = 0; 
        else if new_sens(1) == new_sens(2) 
                different = 0; 
            end 
        end 
    else if r == 2 
        if new_sens(1) == new_sens(2) 
            different = 0; 
        end 
        end 
    end 
     
    if different == 0 
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    else 
        for i = 1:r 
            if X(new_sens(i), 1) <= budget  %New sensor combination 

meets the budget 
constraint 

                if X(new_sens(i), 2) <= weight  %New sensor combo meets 
the weight constraint 

                    if X(new_sens(i), 3) <= size  %New sensor combo 
meets the size 
constraint 

                        different = 1; 
                        sensors(new_sens(i)) = 1;  %Update the sensor 

array 
                        budget = budget - X(new_sens(i),1);  %Update 

budget 
                        weight = weight - X(new_sens(i),2);  %Update 

weight 
                        size = size - X(new_sens(i),3);  %Update size 
                    end 
                end 
            end 
        end 
    end 
end 
%end change sensors 
%change SAR 
different = 0; 
for i = 1:m 
    if SAR(i) == 0 
    else 
        SAR(i) = 0;  %Remove current SAR from list 
        budget = budget + Y(i, 1);  %Update budget 
        weight = weight + Y(i, 2);  %Update weight 
        size = size + Y(i, 3);  %Update size 
        SAR_record(s) = i;  %Record the value of the SAR removed 
        s = s + 1; 
    end  
    if  s == 2  %The one SAR component has been removed 
        break 
    end 
end 
  
while different == 0 
     
    new_SAR = unidrnd(m,1,1);  %Generate a new SAR value 
    different = 1; 
     
    if SAR_record(1) == new_SAR(1)  %SAR value generated is the same as 

the previous SAR value 
        different = 0;                 
    end 
     
    if different == 0 
    else  %SAR value generated is different from the previous SAR Value 
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        different = 0; 
        if Y(new_SAR(1), 1) <= budget  %New SAR value meets the budget 

constraint 
            if Y(new_SAR(1), 2) <= weight  %New SAR value meets the 

weight constraint 
                if Y(new_SAR(1), 3) <= size  %New SAR value meets the 

size constraint 
                    different = 1; 
                    SAR(new_SAR(1)) = 1;  %Update SAR 
                    budget = budget - Y(new_SAR(1),1);  %Update budget 
                    weight = weight - Y(new_SAR(1),2);  %Update weight 
                    size = size - Y(new_SAR(1),3);   %Update size 
                end 
            end 
        end 
    end 
end 
%end change SAR  
%Change weapons 
different = 0; 
while different == 0 
    different = 1; 
    weapon_500 = floor((weapon_weight*rand())/500);  %Determine number 

of 500 lb weapons 
    weapon_weight = weapon_weight - 500*weapon_500;  %Update weapon 

weight 
    weapon_250 = floor((weapon_weight*rand())/250);  %Determine number 

of 250 lb weapons 
    weapon_weight = weapon_weight - 250*weapon_250;  %Update weapon 

weight 
    weapon_60 = floor(weapon_weight/60);  %Determine number 60 lb 

weapons 
    new_weapons = [weapon_500, weapon_250, weapon_60]; 
    if new_weapons == weapons 
        weapon_weight = orig_weapon_weight; 
        different = 0; 
    end 
    if different == 1 
        weapons = new_weapons; 
    end 
end 
%end change weapons 
%Change no_uav 
no_old_uav = no_uav; 
max_no_uav = floor(total_budget/(orig_budget-budget)); 
different = 0; 
while different == 0 
    no_uav = unidrnd(max_no_uav,1,1); 
    different = 1; 
    if no_uav == no_old_uav 
        different = 0; 
    end 
end 
%end change no_uav 
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Return 
%End multi-swap diversification  
 
 
A.4 Intensification 
%Start single-swap intensification 
function [sensors, budget, weight, size, new_sens, r, no_uav] = 
single_swap(X, sensors, budget, weight, size, n, orig_budget, 
total_budget, no_uav) 
  
record = zeros(1,3); 
j = 1; 
different = 0; 
r = 1;  %Only one EO/IR sensor will change 
for i = 1:n 
    if sensors(i) == 0 
    else 
        record(j) = i;  %Records the values of the sensors that are in 

use 
        j = j + 1; 
    end  
    if  j == 4  %Break if three sensors are in use 
        break 
    end 
end 
  
sen_delete = unidrnd(j-1,1,1);  %Record the value of the sensor that 

will be removed 
sensors(record(sen_delete)) = 0;  %Delete the sensor that is removed 
budget = budget + X(record(sen_delete),1);  %Update budget 
weight = weight + X(record(sen_delete),2);  %Update weight 
size = size + X(record(sen_delete),3);  %Update size 
  
while different == 0 
    new_sens = unidrnd(n,1,1);  %Choose a new sensor to add to the set 

of sensors 
    different = 1; 
     
    for k = 1:(j-1) 
        if record(k) == new_sens  %The new sensor is the same as a 

current or deleted sensor 
            different = 0; 
            break 
        end 
    end 
    if different == 0 
    else  %The new sensor is different than the sensor deleted 
        different = 0; 
        if X(new_sens, 1) <= budget  %The new sensor meets the budget 

constraint 
            if X(new_sens, 2) <= weight  %The new sensor meets the 

weight constraint 
                if X(new_sens, 3) <= size  %The new sensor meets the 

size constraint 
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                    different = 1; 
                    sensors(new_sens) = 1;  %The sensor array is 

updated 
                    budget = budget - X(new_sens,1);  %Update budget 
                    weight = weight - X(new_sens,2);  %Update weight 
                    size = size - X(new_sens,3);   %Update size 
                end 
            end 
        end 
    end 
end 
  
%Evaluate no_uav 
max_no_uav = floor(total_budget/(orig_budget-budget)); 
if no_uav > max_no_uav 
    no_uav = unidrnd(max_no_uav,1,1); 
end 
  
return 
%Stop single-swap intensification 
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